L'equació de continuïtat és una llei física que estableix que la quantitat de massa o fluid que entra en un sistema tancat és igual a la quantitat de massa o fluid que surt del sistema al mateix període de temps.
L'equació de continuïtat és vàlida per a qualsevol tipus de fluid, sempre que el fluid sigui incompressible i el flux sigui estacionari, és a dir, que la velocitat i les propietats del fluid a qualsevol punt del sistema no variïn amb el temps.
Un fluid incompressible és aquell que té una densitat constant i no en canvia el volum en resposta a l'aplicació d'una pressió.
Exemples de l'equació de continuïtat
A continuació, es presenten alguns exemples de la seva aplicació a la vida quotidiana:
Flux de líquid en un tub
Un exemple clàssic daplicació de lequació de continuïtat és el flux de líquid en un tub.
Suposem que un líquid flueix mitjançant un tub de secció transversal A₁ amb una velocitat v₁ i després entra en un tub de secció transversal A₂ amb una velocitat v₂.
Mitjançant aquesta equació podem dimensionar les seccions del tub per alterar la velocitat del flux.
Flux d'aigua en un riu
L´equació de continuïtat també s´aplica al flux d´aigua en un riu.
Aquesta equació s'utilitza per calcular la velocitat de l'aigua en diferents punts del riu. Per tant, es pot predir el comportament del riu en diferents condicions, com per exemple quan es construeixen preses o es fan obres d'enginyeria per al control d'inundacions .
Fórmula matemàtica
En termes matemàtics, l'equació de continuïtat s'expressa mitjançant la fórmula següent:
A₁ * v₁ = A₂ * v₂
On:
- A₁ i A₂ són les àrees transversals del conducte o canonada als punts 1 i 2 respectivament.
- v₁ i v₂ són les velocitats del fluid als punts 1 i 2 respectivament.
D'acord amb l'equació de continuïtat, si l'àrea transversal del conducte o canonada per la qual el fluid flueix es manté constant, llavors la velocitat del fluid i el cabal estan inversament relacionats. En altres paraules, si la velocitat del fluid augmenta, el cabal disminueix i viceversa.
Relació amb el principi de continuïtat
L'equació de continuïtat està estretament relacionada amb el principi de continuïtat que estableix que, en un sistema de flux estable, la quantitat de fluid que hi entra ha de ser igual a la que surt, sempre que no hi hagi pèrdues ni acumulacions.
Aquest principi es basa en la conservació de la massa i s'aplica a fluids incompressibles (aquells la densitat dels quals no canvia significativament, com l'aigua) i en certs casos a fluids compressibles (com a gasos).
En termes pràctics, el principi de continuïtat implica que si un fluid es mou a través d'un conducte amb diferents àrees de secció transversal, la velocitat canviarà per mantenir constant el cabal volumètric o màssic. Per exemple, si el conducte s'estreny, el fluid ha d'augmentar la velocitat per compensar la reducció de l'àrea, i viceversa si el conducte s'eixampla.
Usos i aplicacions pràctiques
L'equació de continuïtat té múltiples aplicacions a la física i l'enginyeria, en particular a la mecànica de fluids. A continuació, es presenten algunes de les principals aplicacions:
- Disseny de sistemes de canonades: s'utilitza per calcular el cabal i la velocitat del fluid en diferents punts del sistema de canonades, cosa que permet dimensionar el diàmetre i la longitud de les canonades per garantir un flux constant i uniforme.
- Anàlisi del flux en conductes i canals: s'aplica per analitzar el flux de líquids en conductes i canals, permetent determinar la velocitat i el cabal a diferents punts del sistema.
- Optimització de l'eficiència de sistemes hidràulics: s'utilitza per optimitzar l'eficiència de sistemes hidràulics, com ara turbines i bombes, ja que permet calcular el cabal i la velocitat del fluid en diferents punts del sistema i determinar la geometria òptima dels components del sistema.
Exercicis resolts
Exercici 1
Un tub de secció transversal de 0,02 m² transporta aigua a una velocitat de 2 m/s. Si el diàmetre del tub es redueix a la meitat del valor original, quina és la velocitat de l'aigua al tub estret?
Solució:
L'equació de continuïtat estableix que el cabal volumètric del fluid que flueix a través del tub és constant al llarg del flux. Per tant, podem escriure:
A₁·v₁ = A₂·v₂
on A1 és la secció transversal original del tub, v1 és la velocitat original de l'aigua, A₂ és la secció transversal del tub estret i v₂ és la velocitat de l'aigua al tub estret.
Tenim A₂ = A₁/4, ja que el diàmetre del tub es redueix a la meitat del seu valor original, per tant, A₂ = π(0.01 m)² = 0.000314 m².
Substituint els valors coneguts a l'equació de continuïtat, obtenim:
0,02 m² × 2 m/s = 0,000314 m² × v₂
v₂ = (0,02 m² × 2 m/s) / 0,000314 m² = 127,39 m/s
Per tant, la velocitat de l'aigua al tub estret és de 127.39 m/s.
Exercici 2
Una canonada de 0,1 m de diàmetre transporta aigua a una velocitat de 2 m/s. Si s'hi afegeixen dues canonades de 0,05 m de diàmetre, quina és la velocitat de l'aigua en cadascuna de les canonades més petites?
Solució:
La secció transversal d'una canonada de 0,1 m de diàmetre és A₁ = π(0.05 m)² = 0.00785 m². Per tant, el cabal volumètric d'aigua que flueix per la canonada de 0,1 m és:
Q = A₁v₁ = 0,00785 m² × 2 m/s = 0,0157 m³/s
La secció transversal d'una canonada de 0.05 m de diàmetre és A₂ = π(0.025 m)² = 0.0001963 m². cabal volumètric de aigua que flueix per les dues canonades de 0.05 m és:
Q = A₃·v₃
v3 = Q / A3 = 0,0157 m³/s / 0,0003926 m² = 40,11 m/s
Per tant, la velocitat de l'aigua a cadascuna de les canonades de 0,05 m de diàmetre és de 40,11 m/s.